Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice

J Physiol. 2015 Mar 1;593(5):1113-25. doi: 10.1113/jphysiol.2014.281014. Epub 2015 Jan 20.

Abstract

Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Mice
  • Nerve Fibers / metabolism*
  • Nerve Fibers / physiology
  • Purinergic P2X Receptor Antagonists / pharmacology
  • Receptors, Purinergic P2X3 / genetics
  • Receptors, Purinergic P2X3 / metabolism*
  • Synapses / metabolism
  • Taste Buds / metabolism*
  • Taste Buds / physiology
  • Taste*

Substances

  • Purinergic P2X Receptor Antagonists
  • Receptors, Purinergic P2X3
  • Adenosine Triphosphate